Battery Power Tips

  • Home
  • Markets & Applications
    • Automotive
    • Aerospace & Defense
    • Energy Management & Harvesting
    • Industrial
    • IoT
    • Medical
    • Renewables & Grid Connected
    • Robotics
    • Stationary Power
    • Wearables
  • Learn
    • eBooks/Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • R&D
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • White Papers
  • Engineering Training Days
  • Advertise
  • Subscribe

Energy efficient supercapacitor cell balancers include over-voltage protection

By lteschler | October 8, 2019

The precision dual-channel SABMBOVP2XX family of products automatically balances supercapacitors with the addition of over-voltage protection (OVP). The result is energy-efficient supercapacitor balancing, ideal for products that require low-loss energy power, leakage current regulation, and OVP.

Supercapacitor cells typically operate at a nominal recommended working voltage. However, voltages that exceed the maximum rating for a prolonged period will reduce cell operating life and advanced linear deviceseventually lead to failure. The nature of supercapacitors is that each has tolerance differences in capacitance value, internal resistance, and leakage current. When two or more supercapacitors are connected, either in a series or in parallel, these differences cause an imbalance in cell voltages that must be addressed through balancing so that no one cell exceeds its maximum rated voltage.

“The OVP board is the only commercially available balancing scheme that manages both overvoltage and leakage current,” said Robert Chao, president and founder of ALD Inc. “The circuit used on the board offers matched precision push–pull voltage/current action, which is ideal for cells with a minimal amount of energy loss.”

ALD’s SABMBOVP2XX Printed Circuit Boards (PCBs) include a plug-and-play feature, which enables sophisticated precision voltage clamp circuits with extremely high current gains. This combination is ideally suited for balancing large supercapacitors that are stacked in a series, from two to hundreds of cells with values of 0.1 F to 3,000 F and beyond.

The SABMBOVP family has extremely low output currents at input voltages that are below the threshold voltage when a drastic change in output current balancing is achieved through a sharp and steep change in the output current in response to small, incremental input voltages that are above the threshold voltage and balancing occurs.

A critical design innovation of the family is that it has a high-current-gain (di/dV = ̴3 mA/1 mV) amplifier, which typically produces more than 1,000,000 times the output increase with only small increments of less than 100 mV in input change. By amplifying the output current, the voltage limits are reached quickly and efficiently to safely balance the supercapacitor. For example, a 33-mV-input voltage change can change the current from 1 mA to 100 mA.

The SABMBOVP specifically targets cells in which the charging/discharging currents can be up to 1,000 A, and charging at a few milliamps will take too long to reach the supercapacitor’s voltage limits.

The SABMBOVP2XX PCB is populated with one of the company’s ALD9100XXSALI Supercapacitor Auto Balancing (SAB) MOSFETs, which specify the circuit threshold or clamping voltage to balance the circuit with near-zero charge loss. The balancing output current from the SAB MOSFET is amplified to produce (nominally) 1 mA of balancing output current at Vin, which is equal to the rated SAB MOSFET threshold.

The PCBs are designed to be compact, economical, and effective in balancing any size of supercapacitor. They are an extremely energy-efficient solution for sensitive sensor circuits. The board is small, measuring just 0.6 x 1.6 in (15.24 x 40.64 mm) and operates in the industrial temperature range of -40 to +85°C. It is made with RoHS-compliant FR4 material and supplied ready for mounting a single ALD9100XX, eight-lead SOIC. ALD also offers an unpopulated universal PCB for use with ALD9100xx Dual SAB MOSFETs. The boards can be cascaded to form a series-connected chain of boards to balance series-connected supercapacitors. The product family is in stock at Mouser and Digikey, and prices start from $15.42 each for a fully populated and tested board.

Advanced Linear Devices, Inc., 415 Tasman Dr, Sunnyvale, CA 94089, (408) 747-1155, https://www.aldinc.com/

You may also like:

  • dry cell vs wet cell
    Dry cell vs wet cell batteries

  • Energy storage by the Farad, Part 2: Supercapacitors & batteries

  • Where do supercapacitors fit in robots?

  • Batteries and charging for wireless IoT sensor nodes and wearables

Filed Under: Battery Management
Tagged With: advancedlineardevices
 

Next Article

← Previous Article
Next Article →

“battery
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Featured Contributions

  • Preparing for sodium-ion battery storage? Advanced simulation models can help
  • Q & A: why automation is essential for advancing EV battery manufacturing
  • Battery and charging innovations driving electrification
  • What is a lithium battery digital passport?
  • Battery testing: critical to the rise of electric vehicles
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center

ENGINEERING TRAINING DAYS

engineering

RSS Current EDABoard.com discussions

  • 12VAC to 12VDC 5A on 250ft 12AWG
  • Lightbox circuit help
  • Engineer's own PCB layout software guide?
  • LVS Mismatch Error in Simple Layout
  • Does mobility carrier ratio changes with Wn? (0.18um) inverter design
“bills
Battery Power Tips
  • EE World Online
  • Design World
  • Medical Design & Outsourcing
  • Solar Power World
  • The Robot Report
  • Contact
  • Sign Up Enews

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Battery Power Tips

  • Home
  • Markets & Applications
    • Automotive
    • Aerospace & Defense
    • Energy Management & Harvesting
    • Industrial
    • IoT
    • Medical
    • Renewables & Grid Connected
    • Robotics
    • Stationary Power
    • Wearables
  • Learn
    • eBooks/Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • R&D
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • White Papers
  • Engineering Training Days
  • Advertise
  • Subscribe