Battery Power Tips

  • Home
  • Markets & Applications
    • Automotive
    • Aerospace & Defense
    • Energy Management & Harvesting
    • Industrial
    • IoT
    • Medical
    • Renewables & Grid Connected
    • Robotics
    • Stationary Power
    • Wearables
  • Learn
    • eBooks/Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • R&D
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • White Papers
  • Engineering Training Days
  • Advertise
  • Subscribe

New 1-MHz active clamp flyback chipset ,6-A three-level buck battery charger cut power supply size and charge time

By pbeach@wtwhmedia.com | March 1, 2018

Texas Instruments (TI) today introduced several new power management chips that enable designers to boost efficiency and shrink power-supply and charger solution sizes for personal electronics and handheld industrial equipment.

Operating at up to 1 MHz, TI’s new chipset combines the UCC28780 active clamp flyback controller and the UCC24612 synchronous rectifier controller to help cut the size of power supplies in AC/DC adapters and USB Power Delivery chargers in half. For battery-powered electronics that need maximum charging efficiency in a small solution size, the bq25910 6-A three-level buck battery charger enables up to a 60 percent smaller-solution footprint in smartphones, tablets and electronic point-of-sale devices.

“Consumers want faster charging in a smaller footprint. These new solutions not only accomplish that, but also enable designers to do more than they could before with less power,” said Steve Lambouses, TI vice president, High Voltage Power.

Designed to work with both gallium nitride (GaN) and silicon (Si) FETs, the UCC28780’s advanced and adaptive features enable the active clamp flyback topology to meet modern efficiency standards. With multimode control that changes the operation based on input and output conditions, pairing the UCC28780 with the UCC24612 can achieve and maintain high efficiency at full and light loads. For more information, see www.ti.com/UCC28780-pr and www.ti.com/UCC24612-pr.

 

  • Double the power density: The chipset delivers efficient operation at up to 1 MHz, enabling a size reduction of 50 percent and higher power density than solutions today.
  • High efficiency: Multimode control enables efficiency up to 95 percent at full loads and standby power of less than 40 mW, exceeding Code of Conduct (CoC) Tier 2 and U.S. Department of Energy (DoE) Level VI efficiency standards. For designs above 75 W, engineers can also pair the chipset with a new six-pin power-factor correction (PFC) controller, the UCC28056, which is optimized for light-load efficiency and low standby power consumption to achieve compliance with mandatory International Electrotechnical Commission (IEC)-61000-3-2 AC current harmonic limit regulations.
  • Simplified design: Using features such as adaptive zero voltage switching (ZVS) control, engineers can easily design their systems with a combination of resistor settings and controller auto-tuning.

Leveraging an innovative three-level power-conversion technology, the bq25910 enables up to 50 percent faster charging compared to conventional architectures by dramatically reducing thermal loss. For more information, see www.ti.com/bq25910-pr.

  • Small solution size: With integrated MOFSETs and lossless current sensing, the bq25910 reduces printed circuit board (PCB) space and allows designers to use small 0.33-µH inductors, saving even more space.
  • Faster charging: The bq25910 enables 95 percent charging efficiency, which could take a standard smartphone battery from empty to 70 percent charged in less than 30 minutes.
  • Flexible system design: A differential battery-voltage sense line enables fast charging by bypassing parasitic resistance in the PCB for more accurate voltage measurements, even if the battery is placed away from the charger in the system.

All of these new devices are available today with pricing, package and evaluation module availability as listed in the following table.

 

UCC28780

UCC24612

UCC28056

bq25910

Price

for 1,000-unit quantities

US$0.60

US$0.40

US$0.37

US$2.10

Package type

Small outline integrated circuit (SOIC) and quad flat no-lead (QFN)

Small outline transistor (SOT)-23

SOT-23

Wafer chip-scale package (WCSP)

Evaluation module (EVM)

UCC28780EVM-002

UCC24612-1EVM

UCC28056EVM-296

bq25910EVM-854


Filed Under: Battery Management
Tagged With: texasinstruments
 

Next Article

← Previous Article
Next Article →

“battery
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Featured Contributions

  • Preparing for sodium-ion battery storage? Advanced simulation models can help
  • Q & A: why automation is essential for advancing EV battery manufacturing
  • Battery and charging innovations driving electrification
  • What is a lithium battery digital passport?
  • Battery testing: critical to the rise of electric vehicles
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center

ENGINEERING TRAINING DAYS

engineering

RSS Current EDABoard.com discussions

  • i need an embedded c program that will read a 12 bit memory address from the io pins and output the data to pins from the memory in a 8051 mcontroller
  • DC/DC Converter with wide range input
  • Hard wired security cameras
  • Calculating inductor value for buck converter using XL1509 IC
  • Spice model for diode for rectifier simulation
“bills
Battery Power Tips
  • EE World Online
  • Design World
  • Medical Design & Outsourcing
  • Solar Power World
  • The Robot Report
  • Contact
  • Sign Up Enews

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Battery Power Tips

  • Home
  • Markets & Applications
    • Automotive
    • Aerospace & Defense
    • Energy Management & Harvesting
    • Industrial
    • IoT
    • Medical
    • Renewables & Grid Connected
    • Robotics
    • Stationary Power
    • Wearables
  • Learn
    • eBooks/Tech Tips
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • R&D
  • Resources
    • Design Guide Library
    • Digital Issues
    • Engineering Diversity & Inclusion
    • LEAP Awards
    • White Papers
  • Engineering Training Days
  • Advertise
  • Subscribe