In a video, EE World spoke with a power-supply applications engineer about why RV batteries use such high voltages and how to test them. Batteries are perhaps the most expensive component of an electric vehicle. Typically producing 800 V to 900 V, batteries deliver the power needed move the vehicle. Of course, EV batteries need…
How does MBSE work for EV and stationary battery energy storage systems?
Model-based systems engineering (MBSE) is comprehensive. The International Council on Systems Engineering (INCOSE) defines MBSE as the “formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.” It’s especially applicable to complex systems of systems like…
How does vehicle-to-grid technology work to improve sustainability?
Vehicle-to-grid (V2G) technology is often touted as one key to a more sustainable energy infrastructure. Like other areas where technology strongly impinges on economic and social interactions, however, the reality is complex and nuanced. Battery chargers can be a particularly daunting technical problem when implementing V2G. The charger must be bidirectional and offer high efficiency.…
Harnessing silicon: the future of lithium-ion batteries
By Ashok Lahiri, Enovix Corporation The first lithium-ion (Li-ion) battery, developed and commercialized by Sony Corporation in 1991, provided a step-change increase in energy density for its handheld camcorder — a harbinger of the many power-hungry portable electronic devices to come. Without this battery innovation, the brick-size cell phone of the 1980s would never have…
How can primary Li batteries contribute to sustainability?
A lot has been written regarding rechargeable lithium (LI) batteries and sustainability. Primary (non-rechargeable) Li batteries can also make major contributions to improving the sustainability of the systems where they are used. This FAQ reviews some of the factors related to the sustainability of primary Li batteries including key performance indicators (KPIs), downcycling versus recycling,…
How scanning electron microscopy is helping researchers develop better lithium-ion batteries
By Pamela Mansfield, JEOL USA As the market for renewable energy sources and electric vehicles grows, the need for reliable, high-capacity energy storage is increasing too. Lithium-ion batteries (LIBs) fit the bill in many ways, but plenty of challenges remain ahead, such as understanding their microstructure. This article describes how scanning electron microscopy (SEM) can…
How can sensors save energy and improve sensor node battery life?
In a battery-powered, wireless sensing node, the biggest energy consumer typically is the RF transmitter. The transceiver should have extremely low power in active, wait and even sleep modes. A one-second snapshot of the current consumption in the various portions of the transmission cycle shows the current draw of 15 mA for the 7.5-ms receive…
Need a really long-life battery or heat? Try a radioisotope thermal source – problem solved! – Part 4
Power-generation and heating units using radioactive decay as their primary energy source have been successfully used in space and on Earth for over 60 years. Q: How much power does a single Pu-238 RTG core generate? A: The newest thermoelectric converters using PbTe/TAGS-based thermocouples can produce between 100 and 125 Watts of electrical energy from […]
What are the six kinds of magnetism?
Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, antiferromagnetism, and superparamagnetism are the six kinds of magnetism. This FAQ begins with a brief review of the basic sources of magnetism, considers the magnetic susceptibility of various materials, and then briefly presents the characteristics of the six types of magnetism. The root cause of magnetism is the behavior of electrons,…
Rare earths and EVs — it’s not about batteries
Rare earths play an important part in the sustainability of electric vehicles (EVs). While there are sustainability challenges related to EV batteries, rare earths are not used in lithium-ion batteries. They are necessary for the magnets that form the main propulsion motors. The batteries mostly rely on lithium and cobalt (not rare earths). At the…